sábado, 24 de mayo de 2008

Las teorías de la relatividad e inflacionaria





Albert Einstein y la relatividad




Según las leyes del movimiento establecidas por primera vez con detalle por Isaac Newton hacia 1680-89, dos o más movimientos se suman de acuerdo con las reglas de la aritmética elemental. Supongamos que un tren pasa a nuestro lado a 20 kilómetros por hora y que un niño tira desde el tren una pelota a 20 kilómetros por hora en la dirección del movimiento del tren. Para el niño, que se mueve junto con el tren, la pelota se mueve a 20 kilómetros por hora. Pero para nosotros, el movimiento del tren y el de la pelota se suman, de modo que la pelota se moverá a la velocidad de 40 kilómetros por hora.Como veis, no se puede hablar de la velocidad de la pelota a secas. Lo que cuenta es su velocidad con respecto a un observador particular. Cualquier teoría del movimiento que intente explicar la manera en que las velocidades (y fenómenos afines) parecen variar de un observador a otro sería una «teoría de la relatividad».La teoría de la relatividad de Einstein nació del siguiente hecho: lo que funciona para pelotas tiradas desde un tren no funciona para la luz. En principio podría hacerse que la luz se propagara, o bien a favor del movimiento terrestre, o bien en contra de él. En el primer caso parecería viajar más rápido que en el segundo (de la misma manera que un avión viaja más aprisa, en relación con el suelo, cuando lleva viento de cola que cuando lo lleva de cara). Sin embargo, medidas muy cuidadosas demostraron que la velocidad de la luz nunca variaba, fuese cual fuese la naturaleza del movimiento de la fuente que emitía la luz.Einstein dijo entonces: supongamos que cuando se mide la velocidad de la luz en el vacío, siempre resulta el mismo valor (unos 299.793 kilómetros por segundo), en cualesquiera circunstancias.
¿Cómo podemos disponer las leyes del universo para explicar esto? Einstein encontró que para explicar la constancia de la velocidad de la luz había que aceptar una serie de fenómenos inesperados.Halló que los objetos tenían que acortarse en la dirección del movimiento, tanto más cuanto mayor fuese su velocidad, hasta llegar finalmente a una longitud nula en el límite de la velocidad de la luz; que la masa de los objetos en movimiento tenía que aumentar con la velocidad, hasta hacerse infinita en el límite de la velocidad de la luz; que el paso del tiempo en un objeto en movimiento era cada vez más lento a medida que aumentaba la velocidad, hasta llegar a pararse en dicho límite; que la masa era equivalente a una cierta cantidad de energía y viceversa.Todo esto lo elaboró en 1905 en la forma de la «teoría especial de la relatividad», que se ocupaba de cuerpos con velocidad constante. En 1915 extrajo consecuencias aún más sutiles para objetos con velocidad variable, incluyendo una descripción del comportamiento de los efectos gravitatorios. Era la «teoría general de la relatividad».Los cambios predichos por Einstein sólo son notables a grandes velocidades. Tales velocidades han sido observadas entre las partículas subatómicas, viéndose que los cambios predichos por Einstein se daban realmente, y con gran exactitud. Es más, sí la teoría de la relatividad de Einstein fuese incorrecta, los aceleradores de partículas no podrían funcionar, las bombas atómicas no explotarían y habría ciertas observaciones astronómicas imposibles de hacer.Pero a las velocidades corrientes, los cambios predichos son tan pequeños que pueden ignorarse. En estas circunstancias rige la aritmética elemental de las leyes de Newton; y como estamos acostumbrados al funcionamiento de estas leyes, nos parecen ya de «sentido común», mientras que la ley de Einstein se nos antoja «extraña».

La teoría inflacionaria

De acuerdo con la teoría de la Gran Explosión o del Big Bang, generalmente aceptada, el Universo surgió de una explosión inicial que ocasionó la expansión de la materia desde un estado de condensación extrema. Sin embargo, en la formulación original de la teoría del Big Bang quedaban varios problemas sin resolver. El estado de la materia en la época de la explosión era tal que no se podían aplicar las leyes físicas normales. El grado de uniformidad observado en el Universo también era difícil de explicar porque, de acuerdo con esta teoría, el Universo se habría expandido con demasiada rapidez para desarrollar esta uniformidad.Según la teoría del Big Bang, la expansión del universo pierde velocidad, mientras que la teoría inflacionaria lo acelera e induce el distanciamiento, cada vez más rápido, de unos objetos de otros. Esta velocidad de separación llega a ser superior a la velocidad de la luz, sin violar la teoría de la relatividad, que prohíbe que cualquier cuerpo de masa finita se mueva más rápido que la luz. Lo que sucede es que el espacio alrededor de los objetos se expande más rápido que la luz, mientras los cuerpos permanecen en reposo en relación con él.A esta extraordinaria velocidad de expansión inicial se le atribuye la uniformidad del universo visible, las partes que lo constituían estaban tan cerca unas de otras, que tenían una densidad y temperatura comunes.Alan H Guth del Instituto Tecnológico de Massachussets (M.I.T.) sugirió en 1981 que el universo caliente, en un estadio intermedio, podría expandirse exponencialmente. La idea de Guth postulaba que este proceso de inflación se desarrollaba mientras el universo primordial se encontraba en el estado de superenfriamiento inestable. Este estado superenfriado es común en las transiciones de fase; por ejemplo en condiciones adecuadas el agua se mantiene líquida por debajo de cero grados. Por supuesto, el agua superenfriada termina congelándose; este suceso ocurre al final del período inflacionario.En 1982 el cosmólogo ruso Andrei Linde introdujo lo que se llamó "nueva hipótesis del universo inflacionario". Linde se dió cuenta de que la inflación es algo que surge de forma natural en muchas teorías de partículas elementales, incluidos los modelos más simples de los campos escalares. Si la mayoría de los físicos han asumido que el universo nació de una sola vez; que en un comienzo éste era muy caliente, y que el campo escalar en el principio contaba con una energía potencial mínima, entonces la inflación aparece como natural y necesaria, lejos de un fenómeno exótico apelado por los teóricos para salir de sus problemas. Se trata de una variante que no requiere de efectos gravitatorios cuánticos, de transiciones de fase, de un superenfriamiento o también de un supercalentamiento inicial.Considerando todos los posibles tipos y valores de campos escalares en el universo primordial y tratando de comprobar si alguno de ellos conduce a la inflación, se encuentra que en los lugares donde no se produce ésta, se mantienen pequeños, y en los dominios donde acontece terminan siendo exponencialmente grandes y dominan el volumen total del universo. Considerando que los campos escalares pueden tomar valores arbitrarios en el universo primordial, Andrei Linde llamó a esta hipótesis "inflación caótica". La teoría inflacionaria, predice que el universo debe ser esencialmente plano, lo cual puede comprobarse experimentalmente, ya que la densidad de materia de un universo plano guarda relación directa con su velocidad de expansión.La otra predicción comprobable de esta teoría tiene que ver con las perturbaciones de densidad producidas durante la inflación. Se trata de perturbaciones de la distribución de materia en el universo, que incluso podrían venir acompañadas de ondas gravitacionales. Las perturbaciones dejan su huella en el fondo cósmico de microondas, que llena el cosmos desde hace casi 15 mil millones de años.

1 comentario:

Anónimo dijo...

este articulo proporciona datos de muxo interes...no nos a resuelto la duda pero no dudamos de su profesionalidad....